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Abstract Exact formulae are presented for the instantaneous phase and frequency of GMSK modulated 
signals used at telecommunication systems GSM, DECT, TETRA. Polynomial and rational approximations 
are derived for them with different accuracy. The spectrum of the modulated signal and the zero positions of 
the equivalent FM are also investigated. Algorithms for (de)modulation are described. 

INTRODUCTION 

In telecommunication systems the information is transmitted by means of some 
kind of modulation of high frequency electromagnetic waves. If the data to be transmitted 
is digital, digital modulation schemes are used. There have been many of them proposed 
and used, like Phase Shift Keying, Frequency Shift Keying, and Quadrature Amplitude 
Modulation. They present different tradeoffs between cost and tolerance to noise and 
other disturbances, spectral efficiency etc. One of the most widely used digital 
modulation techniques is GMSK: Gaussian Minimum (phase) Shift Keying. 

A general modulated signal is expressed as 
A t t tcb g b gc hcos ω ϕ+  

where t is the time, A(t) is the amplitude envelope of the signal, ω πc cf= ⋅2  is the 
(angular) frequency of the carrier, ϕ tb g is the phase offset. The instantaneous frequency 
of the modulated signal is the derivative of the total phase with respect to the time 

2π ω ϕ⋅ = + ′f t tcb g b g, 
therefore it is determined by ϕ tb g up to the constant ω c . 

In order to minimize the interference between different sources of radio frequency 
signals, their bandwidth must be restricted. In general, limiting the bandwidth means 
band-pass filtering the signal. The more sharp edges we have in the frequency domain, 
the longer is the impulse response of the filter. It means the bits of the modulating digital 
signal have more and more affects on each other, the demodulation gets more difficult. 

At GMSK the amplitude A(t) is kept constant and the bits of the digital 
modulation data are used to increase or decrease the phase by a fixed angle (π/2 ). The 
speed of the change of the phase is limited by the means of a Gauss (low-pass) filter. It 



effectively restricts the bandwidth of the transmitted signal in cost of introducing a small 
interference of the modulating bits. In theory, each bit influences the phase at any time in 
the past and in the future. However, this affect is small a few bits away in the past. A few 
bits later the phase gets increased or decreased by a nearly constant angle. It means, in a 
long period the bits have a cumulative (summed) affect on the phase, and the influence of 
each bit is steady outside a short transient time interval. 

The Gauss Function 

The classical Gauss function plays an 
important role in the definition of the GMSK 
modulation: 
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With appropriate scaling of the variable t we 
can take T = 1. Often it is convenient to do 
so. Here are the plots of h(t) with σ  = 0.5, 1, 2. 

Note, that 1=
−∞

∞z h t dt( ) . The integral 

of h(t) cannot be expressed with elementary 
functions, but they are needed often, so a special function has been defined: 
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 With the erf function 
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There have been good piece-wise polynomial 
approximations published for the erf. With a 
few arithmetic operations high accuracy is 
achieved, as it is implemented in MATLAB, 
a numerical calculations software packet. 

Sometimes we need even the integral of the erf function, too: 

erf erfx dx e x xxb g b gz = + ⋅−1 2

π
. 

Convolution Integral 

The convolution g of two functions h and r is defined as 
g t h u r t u dub g b g b g= ⋅ −

−∞

∞z . 
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The Gauss Function 
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Integral of the Gauss Function



As an example, let us convolute the Gauss function with the rectangular pulse: 
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The convolution is 
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This function is the Gauss filtered 
rectangular pulse. It has very similar shape to 
the Gauss function: 

The match between the filtered pulse 
(σ = 1) and a little wider Gauss function 
(σ = 1.04158) is very good. The maximum 
difference is less than 1.6×10-4. 

THE GMSK MODULATION 

Define the constant σ
π

=
⋅

log 2
2 BT

, with 

BT = 0.3 in case of the GSM system. Other common values are BT = 0.5 at DECT and 
BT = 0.25 at Tetrapol. The corresponding σ values are 0.44168, 0.265010, 0.530021 
respectively. Here B corresponds to the bandwidth of the filter represented by the Gauss 
function. The smaller it is, (the larger is σ), a filtered pulse has less sharp edges, the fast 
changes become more gradual. 

The function g(t) is the convolution of the Gauss function with a rectangular pulse 
as above. Let αk = ±1 be the sequence of the (signed) bits to modulate with. The 
instantaneous phase as a function of time is defined as: 

ϕ π αt c g u duk
t kT

k
b g b g= ⋅

−∞

−z∑  

with the constant c, the modulation index. (It is ½ at all the telecom systems in use.) With 
the earlier formulae we can write the phase in closed form which can be evaluated to any 
precision. The integral is easy to derive from that of the erf: 
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Gauss-Filtered Pulse 



At –∞ the exponential terms approach 0, the 
erf converges rapidly to –1. (We know that 
erf ot tb g d i= − +1 1  there). What remains is 
t
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giving − 1
2  for the limit at –∞. Similarly, 
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The bit weight function, being an 
integral from –∞, must have a limit 0 there. 
Accordingly, we define bitwgt(t)= = +G t G ta f a f 1

2 . In MATLAB it looks: 

function u = bitwgt(t, BT, T) 
t1  = t/T - 0.5; 
t2  = t/T + 0.5; 
s   = sqrt(log(2)) / (2*pi*BT); 
s2  = s * sqrt(2); 
s2p = s / sqrt(2*pi); 
u   = s2p*exp(-(t2/s).^2/2) + t2/2.*erf(t2/s2)... 
    - s2p*exp(-(t1/s).^2/2) - t1/2.*erf(t1/s2) + 0.5;   

To perform the phase modulation of a 
carrier of frequency ω c , we need: 

cos ω ϕct t+ b gc h 
with the instantaneous phase depending on 
the modulation bits and the time: 

ϕ π αt c G t kTkkb g b g= ⋅ ⋅ −∑ . 
In theory, each bit influences the phase at any 
time in the past and in the future. However, 
the function G is very close to 0 if t << k – 2T, 
so the affect on the far past is negligible. If 
t >> k + 2T, G is very close to 1. So the bits 
have a cumulative affect in the future, and the 
affect of each bit remains constant after a short transient period. The graph above shows 
that in the GSM case ±2 bits time is enough to use function G and 0/1 elsewhere, with 
less than -88 dB error. (±1.75 bits give -70 dB, about 12 ADC bit accuracy, ±1.5 bits give 
-55 dB, 0.18% accuracy.) In the DECT case 1.375 bit time gives already almost 90 dB 
accuracy, 1.25 bits give almost -75 dB, more than 12 ADC bit accuracy. 

RATIONAL APPROXIMATIONS 

For simulation purposes the above MATLAB function bitwgt is perfect, but in a 
real-time environment, like in an instrument sending GMSK modulated signals a faster 

-3 -2 -1 0 1 2 3
-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5
BT = 0.25
BT = 0.30
BT = 0.50

 
Integral of a Gauss filtered impulse 
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way is needed to calculate the phase. A look-up table is fast, but if memory is restricted 
we must use polynomial or rational approximations, which are only a little slower. The 
advantage of rational approximations is that the argument need not be restricted to a 
specific interval, the result can be accurate everywhere. If divisions are slow, polynomial 
approximations can be faster, though they need a couple of compare-branch instructions 
to provide 0 or 1 outside of the approximation interval. We present several approximation 
functions of different accuracy. C functions are listed generating accurate phase samples 
with the approximations. They are used in phase error measurements and in modulators. 

The function G is smooth, so in finite intervals low order rational functions can be 
found to approximate it. Because of space limitations we restrict ourselves to GSM, the 
most important case. Similar techniques lead to formulae for cases where BT ≠ 0.3. 

Considering the shape of the graph of G, an approximation of the form 
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 looks promising. It can be calculated with about 10 CPU cycles 

using DSP chips, which have division instructions. With an optimization procedure one 
can find the best set of coefficients, as follows. The asymptotic approximation must be as 
good as everywhere else, so during the optimization we keep the ratio of the coefficients 
of the highest x-powers in the numerator and denominator constant (near 1). This 
constant gives ideally the same asymptotic error as the largest approximation error at 
smaller arguments, which is not known until the optimization finishes. Therefore one 
needs an extra level of iteration to bring these values reasonably close to each other. The 
other coefficients are determined by a weighted least-squares optimization or a mini-max 
approximation with the Remez exchange algorithm. (See [5].) The result is 
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It gives an error at most ±0.0029. This 
particular case is difficult to handle with the 
Remez exchange algorithm, because there are 
more extreme values of the error function 
than the number of free parameters would 
normally produce. A weighted least-squares 
optimization works well, though. 

An advantage of this formula is that 
we need not restrict the argument to a 
specific interval, the result is always accurate. 

If we replace x2 with x  a similar good approximation is expected. However, 
there is no extra extreme value of the error function now, and the best approximation 
polynomial gives a much larger (±0.0095) error, with only one less arithmetic operation: 
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Error of a rational approximation of G(x) 



G x
x x

x x
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0.2743 0.8314
0.5206 0.17554 1.6952

. 

We can use higher order rational approximations, too. Different techniques help 
making them as fast as possible to evaluate. E.g. if we see a coefficient to be small at an 
optimum approximation, we fix it to 0, and redo the calculations. Usually we loose only a 
little accuracy but save 1 or 2 arithmetic operations. An example is the following: 
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1.393870 0.862554 3.622348
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It gives an error at most ±0.00166, about half of the error of the first rational 
approximation above, with two more arithmetic operations. 

POLYNOMIAL APPROXIMATIONS 

If our computational platform has no fast division, polynomial approximations 
can be faster to evaluate. Because G(x)–½ is an odd function, in symmetric intervals the 
best approximating polynomials are of the form ½+x·p(x2). If the argument is outside of 
the approximation interval, we use 0 or 1. One gets less than ±0.0022% absolute error 
(0.0012°), ±0.0017% relative error in the interval [–2.095, 2.095] with the following p(x): 

 0.00005737350850·x6–0.00118403525473·x5+0.01062748051621·x4  
 –0.05487241021198·x3+0.18149294715579·x2–0.40690840660122·x+0.74237558203693 

This gives a 13th degree approximation polynomial, which is good enough for 
moderate precision simulations. To determine this polynomial we used first the least 
squares optimization algorithm of MATLAB and extracted every other coefficients (the 
non-zero ones). This is already very good, 
but the maximum error can be improved 
further with a coefficient optimization or a 
special weighting schema for a second least-
squares optimization. These result in the 
polynomial we listed above. 

Its peak error is 2.135e–5. If higher 
accuracy is desired, one can repeat the same 
procedure with longer polynomials. For 
example the best 19th degree approximation 
polynomial has an absolute error smaller than 
3.604e–6. The following table contains the 
coefficients of a few best mini-max 
approximation polynomials along with the maximum errors and the limits beyond which 
the trivial 0 or 1 value is used: 
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Coefficients Approximation Error Approximation Interval 
9.39827957127403e-9 

-3.59336850815957e-7 
6.04854418895465e-6 

-5.85741073236036e-5 
0.000354178044482604 

-0.00130981700348589 
0.00215429267022587 
0.00566478296345006 

-0.0507306804098209 
0.179857667538025 

-0.406722927913324 
0.742386044098122 

7.92e-7 2.425 

2.34099199874687e-7 
-5.97110568850486e-6 
5.96066535905209e-5 

-0.000245918977800911 
-0.000343578515094397 
0.00940718761489751 

-0.0541398530566104 
0.181577115183351 

-0.407122283650813 
0.74241341718403 

3.604e–6 2.257 

5.73735085036847e-5 
-0.00118403525472754 
0.0106274805162063 

-0.054872410211976 
0.18149294715579 

-0.406908406601224 
0.742375582036931 

2.135e–5 2.095 

-0.000536574128250518 
 0.00782589786918152 
-0.0490708250525103 
 0.175668079274966 
-0.404407893574327 
0.742070795527179 

0.0000979 1.89 

0.00350411939854986 
-0.0364605066426604 
0.159644742767781 

-0.396147057641104 
0.740887899611663 

0.000351 1.73 

-0.0136463081061985 
0.110545625947229 

-0.35744115683194 
0.732774337850225 

0.001787 1.55 

0.0653215840982424 
-0.315019192202077 
0.722911344964959 

0.004175 1.4 

For example, the approximation based on the polynomial in the second last row: 
p3(x) = –0.0136463·x3+0.110546·x2–0.357441·x+0.732774 of error ±0.0018, in full form: 
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One can try approximations in the form ½+x·p(|x|), too. If polynomials of the 
same degree are used as at the approximations in the form ½+x·p(x2), the same number of 
operations is needed. We tried these too, but the approximations were generally inferior 
to the previous ones (for the same error we needed a polynomial of one higher degree). 

FAST GENERATION OF IDEAL GMSK MODULATION PHASE 

Here we give C functions, which calculate very precisely the modulation GSM 
phase. (For other GMSK systems, like DECT, one only needs to change the constants.) 



The phase calculation will have an error at most around the number of samples-per-bit 
times the error of the weight function. They are optimized for the requirements of phase 
error measurements. The signal has to be digitized with an integer number of samples per 
modulation bit. Ideally one of the sampling time points falls to the middle of a bit. At a 
signal received from a mobile phone it is not normally the case. For the calculation of the 
phase error of a signal we need to generate a perfectly modulated GSM signal at the same 
time offset relative to the middle of the bits. (The RMS error between the 2 signals has to 
be minimized, thus the phase samples are calculated at many offsets.) 

Because the bit weight function is only needed at some raster points (which repeat 
themselves later, sifted by a number of bit periods), we pre-calculate the necessary 
weights and re-use them later. These values occupy only about 5 times the samples per 
bit (which is chosen in a measurement instrument between 2 and 16, normally 4). 

We can only deal with a finite number of bits, therefore make an assumption, that 
the tail bits of the modulation sequence are infinitely many zeros at both ends. The actual 
effects of these zeros are only perceived at a finite distance of less than 2.5 bits. To be 
safe, do always simulations with 3 or 4 zero modulation bits at the tails. 
#define  BITWGT_LIM  2.425 

/****************************************************************************\ 
* BitWeight     23rd order antisymmetric polynomial approximation 
*   (12 coefficients) 0.5+x*p11(x^2) evaluated by the Horner's scheme, error +/- 7.92e-7 
* Parameter:    t  Normalized Time point: +/-0.5 are the bit-boundaries 
* Return value: The weight a bit affects the phase at time t 
\****************************************************************************/ 
double BitWeight( double t ) { 
    double t2; 
    if ( t <-BITWGT_LIM ) return 0.0; 
    if ( t > BITWGT_LIM ) return 1.0; 
    t2 = t * t; 
    return (((((((((((9.39827957127403e-9  * t2 - 3.59336850815957e-7) * t2 
                    + 6.04854418895465e-6) * t2 - 5.85741073236036e-5) * t2 
                    + 0.000354178044482604)* t2 - 0.00130981700348589) * t2 
                    + 0.00215429267022587) * t2 + 0.00566478296345006) * t2 
                    - 0.0507306804098209 ) * t2 + 0.179857667538025  ) * t2 
                    - 0.406722927913324  ) * t2 + 0.742386044098122  ) * t + 0.5;} 

/****************************************************************************\ 
* GSMPhase      The GSM modulation phase in radians calculated at time points 
*               t = TimeOffs + (0 : Samps_Bit*BitsLen - 1) / Samps_Bit 
*               (uses n extra modulation bits at both tails) 
*               The algorithm is optimized for short bit sequences. 
*               Otherwise it is faster to save the phase sums in a look-up table 
*               Modulation phase error < Samps_Bit * Error(BitWeight) 
* Parameters: 
*   ModBits     Pointer to the array of modulation bits (+1,-1) 
*               - MUST HAVE (3) EXTRA ENTRIES BEFORE AND AFTER THE BITS - 
*                 before = (int)(BitWgtLim - TimeOffs) 
*                 after  = (int)(BitWgtLim + TimeOffs) 
*   BitsLen     Length of the modulation bit sequence 
*   TimeOffs    Time offset in the interval (-1, 1) 
*   Samps_Bit   Samples per bit 
*   BitWgtLim   The limit beyond the GMSK bit weight function has 0/1 values 
*   BitWgt      The name of the bit weight function 
*   wgt         Pointer to a buffer for the bit weights 
*               size >= FLOOR( 2 * BITWGT_LIM * Samps_Bit) + 1 
*   Phase       Buffer for the calculated phase samples 
* Return value: The length of the output data 
\****************************************************************************/ 
int GSMPhase( int   *ModBits,   int      BitsLen,         double  TimeOffs, int     Samps_Bit, 
              double BitWgtLim, double (*BitWgt)(double), double *wgt,      double *Phase) { 



    int    i, j, k, 
           past = 0,     /* accumulated past phase in the non-trivial interval*/ 
           m1 = Samps_Bit * (BitWgtLim + TimeOffs),  /* #weights on the left  */ 
           m2 = Samps_Bit * (BitWgtLim - TimeOffs),  /* #weights on the right */ 
           k1 = TimeOffs  -  BitWgtLim,              /* -#bits on the right   */ 
           iw = m1 - Samps_Bit * k1,                 /* wgt index of last bit */ 
           WgtLen = m1 + m2 + 1; 
    double t, ph, Bit_Samps = 1.0 / Samps_Bit; 

    for ( i = 0, t = TimeOffs - m1 * Bit_Samps; 
          i < WgtLen; 
          ++i,   t+= Bit_Samps) 
        wgt[i] = (*BitWgt)(t);           /* The bit weights needed */ 

    past = 0; 
    t    = TimeOffs; 
    for ( i = 0; i < BitsLen*Samps_Bit; ++i) { 
        if ( iw  >= WgtLen) { 
             iw  -= Samps_Bit; 
             past+= ModBits[k1]; 
             k1  += 1;     } 
        ph = past; 
        for ( j   = iw,   k = k1; 
              j  >= 0; 
              j  -= Samps_Bit, ++k) 
            ph   += ModBits[k] * wgt[j]; /* Loops about 2 * BitWgtLim times */ 
        *Phase++  = M_PI_2 * ph; 
        t  += Bit_Samps; 
        iw += 1;     } 
    return BitsLen*Samps_Bit; } 

Remark: the approximation errors of the phase generation accumulate and can be 
as large as the error of the bit weight function multiplied by the sampling rate. It means, 
higher sampling rate requires proportionally more accurate bit weight approximation. 

INSTANTANEOUS FREQUENCY 

The derivative of the phase is the frequency (c is the modulation index): 

2π ϕ π α π αf t d
dt

c G t kT c g t kTk
k

k
k
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Maximum Frequency Deviation 

The maximum of the frequency occurs when each αk equals to 1, the minimum 
when each αk equals to –1. Substituting the formula for g(t) we get the exact expression 
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That is: max f c
T

c fbit= =
2 2

. In case of the GSM system fbit = =13
48 270 833MHz KHz. …  

and c = 1
2  are defined. They give max .f = =13 67 708MHz

192 KHz… . In case of DECT not 
c, but fbit = 1152 KHz and max f  = 288 KHz = fbit/4 are defined. They give also c = 1

2 . 

Frequency Deviation with Alternating Modulation Bits 

Let us look at the frequency deviation in case of a modulation bit sequence of 
...,+1,–1,+1,–1,... . The frequency cannot reach its maximum of c

T2  because of the fast 



changing bits. Therefore this sequence provides a good test of a GMSK modulation 
device. The exact value of the instantaneous frequency at time t is given by the function 

f t c g t kTk
kb g b g b g= ⋅ − −∑2 1  

Substituting the definition of g in it gives the frequency in form of the infinite sum 
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This function has a period of 2T, changes sign when shifted by T, and because of the 
symmetry its extreme values are at integer multiples of T. Choosing a large enough finite 
sub-range of the sum we get an approximation of the frequency in the middle of this 
range. We know, that the expression in the square bracket approaches 0 very fast, so 
discarding both the unused infinite sums causes only very little errors in the middle. 

f t c
T

t T k

T
c

T
t T n

T

t T n

T
k

k n

n n

b g b g d i b g d i d i
≈ −

− ⋅ −F
HG

I
KJ
+

− − ⋅ − −F
HG

I
KJ
−

− ⋅ +F
HG

I
KJ

L
N
MM

O
Q
PP=− +

−

∑2
1

2
1
4 2 2

1
2

1

1 1
2

1
2erf erf erf

σ σ σ
 

Here the expression in the square brackets is almost 2. In fact, 
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Numerical calculations give, in case of the GSM (BT = 0.3), a peak frequency deviation 
of 32,914.7 Hz, 48.6124% of the possible maximum. It is less than the half of the peak 
FM deviation. In case of the DECT (BT = 0.5), the peak frequency deviation is 
253,902 Hz, 88.1604% of the maximum. It is close to the peak FM deviation. 

Zeros of the Frequency Deviation 

For demodulation purposes it is also helpful to know where the frequency 
deviation curve crosses the zero line. It would be nice, if these happened at exactly 
halfway between the centers of the 
modulation bits. Unfortunately, this is not the 
case: we have interference between the 
modulation bits (ISI). It is relatively small at 
DECT, but large enough at GSM to cause 
problems with high accuracy measurements. 

The exact formulae are so complex, 
that we cannot solve the corresponding 
equations exactly. The only possibility is to 
use accurate approximations and numerical 
solutions of the resulting equations. 1 1.5 2 2.5 3 3.5 4 4.5 5
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To see the effect more clearly we can 
zoom in the zero crossings (see the figure). 

We can put the zero-crossing position 
offsets in a table. Simple linear interpolation 
is enough for the calculations. Bits further 
than 3 positions away do not have significant 
affects, so the table is only 16 entries long: 
because of the symmetry we only consider 01 
bit changes, and the 2 previous and the 2 
following modulation bits. 

The calculations are performed with 
100 samples per bit. Larger values are more accurate, but for our purposes 100 is more 
than enough. The offset values are accurate up to at least 3 decimal places after the point 
(1.4% ≈ 1.4183%). The table shows that only one more bit on both sides of a 01 
modulation bit pair affects noticeably the position of the corresponding zero of the 

instantaneous frequency curve. It can be summarized with 
the following 

Rule: The position of a zero of the instantaneous frequency 
between modulation bits 01 is moved 
• 1.4% earlier by a leading 0 bit 
• 1.4% later by a trailing 1 bit. 
Their affects are additive. 

These mean, that there are 3 possible zero crossing 
offsets: 0 and ±1.4%. It follows, that a positive or negative 
frequency period can be longer or shorter by 0, ±1.4% or 
±2.8% than an integer number of modulation bit period. 

They are so small that don't disturb a demodulation 
algorithm based on the position of the zeros of the frequency 
curve. Only high precision measurements need 
compensation for it. Of course, at DECT this jitter of the 
zero crossing is even smaller. 

GMSK FREQUENCY SPECTRUM 

Modulating with all 0's or with all 1's yield a constant frequency shift of the 
carrier, that is, the spectrum (power spectral density) consists of only one nonzero point. 
The other extreme is when modulating with alternating ±1 bits. This pattern makes the 
frequency of the modulated signal to change the fastest, therefore the spectrum will decay 
the most slowly off the carrier. Also, this bit pattern occurs the most frequently, because 
differential coding is used at most of the telecom systems, and it converts the silence (all 
0 pattern) to alternating bits. 
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Modulation 
Bits 

0-crossing 
offset [%] 

0 0  0 1  0 0 1.4 
0 0  0 1  0 1 1.4 
0 0  0 1  1 0 0.0 
0 0  0 1  1 1 0.0 
0 1  0 1  0 0 0.0 
0 1  0 1  0 1 0.0 
0 1  0 1  1 0 -1.4 
0 1  0 1  1 1 -1.4 
1 0  0 1  0 0 1.4 
1 0  0 1  0 1 1.4 
1 0  0 1  1 0 0.0 
1 0  0 1  1 1 0.0 
1 1  0 1  0 0 0.0 
1 1  0 1  0 1 0.0 
1 1  0 1  1 0 -1.4 
1 1  0 1  1 1 -1.4 



Using the expressions derived earlier one could find a closed form formula for the 
spectrum, but it looks very complicated. Instead, we use numerical approximations and 
discrete Fourier transforms for the spectrum. The peaks are at integer (k) multiples of 
1
2 fbit  (135416 2

3  Hz at GSM,  576 KHz at DECT). They are listed in the following table. 

k 0 1 2 3 4 5 
GSM -0.1288 -18.37 -42.67 -71.08   
DECT -0.4457 -13.176 -31.955 -68.156 -72.483 -89.680 

Levels of GMSK spectral components at modulation with 1010…bits [dB] 

It is also important to look at the spectrum with random modulating bits. 
Compressed data, speech all look like random bit sequences. To see the corresponding 
spectrum, the simplest way is the simulation. Let us generate many pseudo-random bit 
sequences (1000 for the following figures) and average the corresponding spectral data. 

The graph shows, that at 200 KHz frequency offset (the GSM channel spacing) the 
modulated signal is still –36 dBc strong. Even the second adjacent channel is disturbed. 

(There are local peaks at the integer multiples of 1
2 fbit = 576 KHz, due to the 
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subsequences of alternating bits.) We see, that at 1.728 MHz frequency offset (the DECT 
channel spacing) the modulated signal is under –63 dBc. With some degradation of signal 
quality the first adjacent channels might be usable. No channels further away are disturbed. 

DEMODULATION METHODS 

Since the information is coded in phase, we have to retrieve the phase of the 
carrier sine wave. The change of the phase caries the information, so we need the phase 
difference between consecutive samples, or the derivative of the phase, the modulation 
frequency (FM). Next check the sign of the instantaneous frequency around the middle of 
the bit period. (Finding the optimum sampling point is discussed in a subsequent paper.) 
If it is positive, the modulation bit is 1, if it is negative, the modulation bit is 0 (or –1). 

The FM conversion can be done also in the digital domain. Normally the signal is 
mixed down to an intermediate frequency band and converted to digital there. The digital 
sample sequence has to be processed, a typical DSP task. One could look at the 
instantaneous frequency of the signal by a short, sliding FFT. This is not very fast, 
because it calculates all the frequency components and we only need the strongest one. 
Similarly, wavelet transforms are also not practical. A better method is to split the signal 
into quadrature (complex) components by a Hilbert transform or by multiplying with 
cos ω 0tb g and sin ω 0tb g . The component cos ωtb g changes to ½ times of 

cos cosω ω ω ω0 0− + +b gc h b gc ht t  and sin sinω ω ω ω0 0− − +b gc h b gc ht t . 
The multiplier frequency ω 0 is to be chosen equal to the intermediate frequency, so we 
get a base-band conversion. The unwanted high-frequency components at ω ω+ 0  are to 
be filtered out by a low-pass filter. The resulting two sequences are called the in-phase (I) 
and the quadrature (Q) components. The inverse tangent of their ratios gives the phase of 
the received signal at the corresponding time points. 

FM bandwidth for frequency discriminator demodulation 

One possibility for GMSK demodulation is applying a frequency (phase) 
discriminator to the modulated signal. (It can be analog hardware or after an analog-to-
digital conversion digital quadrature converter with phase difference calculation.) The 
result is the instantaneous (FM) frequency. In real-life environments there are disturbing 
foreign signals, like noise. Their effects can be reduced by restricting the bandwidth of 
the signal to the necessary minimum before the frequency discriminator, and also after it. 

The necessary bandwidth before the FM discriminator can be derived from our 
spectrum investigations. At least the bit-frequency is needed: at GSM 270.8 KHz 
(±135.4 KHz), at DECT 1152 KHz, otherwise strong spectral components get lost. 

Inter-Symbol Interference 

We have seen that there is a relatively large interference between the affects of 
individual modulation bits. A single 1 between 0 bits causes only half as much frequency 



deviation as it would between 1 bits. It is usually considered disadvantageous, (and it 
really is at memory-less demodulation), but with some signal processing, the ISI can be 
reduced or it even can be used to improve the noise tolerance of the demodulation. 

Shaping the FM frequency response 

If BT ≤ 0.3 the peak FM at 0101… modulation bit pattern is less than half of the 
maximum which occurs at a modulation with bits 111… or 000…, so a frequency offset 
between the transmitter and the receiver can move the threshold of the comparator too 
close to the FM peak of 0101… case. For an 
improvement (relaxing the frequency offset 
requirements, which is in the range of 100 Hz 
at GSM) the band limiting filter of the FM 
data could have a larger gain at half the bit 
frequency than at DC. It increases the level of 
FM components when needed, undoing the 
low-pass effects of the Gauss filter. 

If the gain at even higher frequencies 
is also increased in the hope to get closer to 
the original rectangular pulse shape of the 
bit-stream, the noise gets amplified, too. In 
each practical situation one has to extend the 
bandwidth until the frequency where the spectral components of the signal are still larger 
than the noise or other disturbances. With 40 dB S/N ratio the cut off frequency must be 
somewhere around 250 KHz at GSM. 

Demodulation based on correlation 

(We use here the GSM case as an example.) Having the FM data one could cut 
out a sequence of 5-bit period, centered at the middle of a bit. We keep the ideal 
modulated FM sequences of all 2 325 =  bit-quintets in a table. Leaving out the first and 
last half bit period, do a correlation of the received sequence with all the stored ones. The 
sequence with the largest correlation is used to determine the middle bit. (Only one bit 
out of 5.) Then shift the correlation window a bit-period further on the FM data of the 
received signal, and repeat the same procedure for the next demodulated bit. This way the 
2 neighbors, who affected the modulation phase of the middle bit at modulation time are 
used to help at the demodulation, too. The ISI actually works for us. 

MODULATION METHODS 

In the previous section we discussed the demodulation process. It is equally 
important to do the modulation also fast and accurate. The modulation information is 
always in the digital domain, at some point it has to be converted to analog, because the 
transmitted signal is normally of such a high frequency that cannot be digitally generated. 
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We discuss two alternatives here using digital signal processing. One method generates 
FM samples, which are used to tune a voltage-controlled oscillator. This is the simplest, 
but has some drawbacks: 
• the modulation distortion of the signal is determined by the analog hardware and it is 

much higher than what we can achieve at digitally generated signals 
• the method is not applicable for other modulation schemes, like QPSK, QAM, 

therefore no dual mode transmitter is possible 
• there is no way to manipulate the signal amplitude for compensation of known 

hardware frequency response, distortion. 

The second method generates digital amplitude samples. They get converted to an 
analog signal, which is up-converted (mixed) to the RF to be transmitted. This method 
does not have the drawbacks of the previous one, but needs a good (expensive) analog 
mixer. It also has two variants as discussed below. 

Intermediate Frequency Carrier 

A DSP generates samples of a GMSK modulated intermediate frequency carrier 
signal. How to chose the intermediate frequency? It has to be mixed up to the transmitter 
frequency, normally in the 900 or 1800 MHz range. A mixer of real signals produces the 
sum and differences of two frequencies, therefore the intermediate frequency must be as 
high as possible to allow a cheap filter to get rid of the unwanted side-band. With 
inexpensive components we can achieve a few tens of MHz. To separate the two side-
bands very good quality filters are needed. It is sometimes better for the up-conversion to 
use 2 or more steps. First mix to a second intermediate frequency, where the side-bands 
are not too close relative to the center frequency. The image rejection filter is cheap, but 
we need at least a second mixer - filter pair, too, to reach the transmitter band. 

The second problem is finding the correct sampling rate. The digital to analog 
conversion process introduces alias frequencies, which have to be removed by an analog 
interpolation filter. In order to keep this filter simple, the sampling rate must be so much 
higher than the intermediate frequency, as possible (to get the aliases far away from the 
signal). The intermediate frequency itself has to be as high as possible, so to find a 
compromise is not easy. Also, a high sampling rate requires expensive components and 
more power. 

Base-Band Samples 

At this method a DSP generates base-band samples. We need a complex 
(quadrature) signal, because the frequency spectrum is not symmetric. Using quadrature 
mixers there are no side-bands. (At least in theory. In praxis a -30 to -40 dB side-band 
signal is still there, but it causes now a distortion, which cannot be removed later.) Here 
the side-band separation filter is traded in the quadrature mixer, which is more complex 
than a real mode mixer. The generated signal is of low frequency, therefore the sampling 
rate can be smaller, but we need a complex signal (I and Q components), which makes 
the two solutions comparable in cost and complexity. 



DSP of the sample generation 

The frequency-samples method is simpler, because the past and future bits only 
have effects in a limited time period (at most 2 bits on both sides are significant). 
Therefore, attaching the 2 leading and 2 trailing bits to the actual one can be used to 
select a table. In this table there are the FM samples at different time offsets from the 
middle of the bit. Normally we have from 1 to 16 samples per bit, so the combined look-
up table is from 32 to 512 entries long. 

When direct amplitude samples are generated, one needs the phase. In a table the 
cosine and the sine of it is stored, maybe adjusted to compensate the distortion and 
frequency response effects of the hardware. Unfortunately, the phase depends on all the 
past bits and on a few bits in the future. But the dependence on the far past is simple. A 1-
bit causes a π/2 phase shift added, a –1-bit causes it subtracted. Therefore we only need 
to keep the sum of the past bits modulo 4, since the trigonometric functions are periodic 
with 2π . The effects of the near-bits are handled similarly as in the case of frequency-
samples, but we need 4 tables according to the past bits. Having some work done in 
hardware the table-size can be reduced, because two pairs of tables contain the same 
numbers, one negated. If quadrature 
data is stored the cosine and sine 
tables need to be swapped at odd bit 
sum values. That is, if we have a 2-bit 
up/down counter for the past bits and 
some sign handling and table 
selection logic we can get away with 
only double table-size as at the 
frequency-samples method. 
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